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LECTURE 14

EROS cont-d.

Systems of Equations
Kronecker-Capelli Theorem
Determinant



Definition.
The row rank of an n X m matrix A, r(A), iIs the dimension of
the subspace of IF""* spanned by rows of A.

Theorem.
For every two matrices A and B, if A~B thenr(A4) = r(B).
Proof. (skipped)

Note. Since the rank of a row echelon matrix is the number of its
nonzero rows, to calculate the rank of a matrix we row reduce the
matrix to a row echelon one and count Its nonzero rows.

Theorem.

For every matrix 4, r(4) = r(4").

We skip the proof .

Note. We could just as well define column rather than row operations and

column rank of a matrix. In view of the last theorem the row and the column
rank of every matrix is the same, so we just use the term rank.



Example.
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FAQ.
1. Can we do several EROS in one step, like we did in the example?

It depends. A common mistake iIs to do something like r; — r, and

r3 — 17 In one go. What is wrong with this? Row r; 1s modified by

the first operation which means in the second one you should use the

new r;. On the other hand, if you first do r; — r; and then r; — ry, it's

ok. In extreme cases, people might row-reduce any matrix to nil, like

this:

P b a—c b-—d
c d c—a d-—b>b

which, if correct, would mean that the rank of every matrix is O.

In short, when in doubt do one ERO at a time.



FAQ.
2. Can we mix EROS with ECOS?

It depends. You must avoid doing row and column operations in one
transformation: writing A~(r; — 3, ¢4 + ¢1) B Is asking for trouble
because after r; — r3 columns ¢, and ¢, are not what they were, a
row operation affects all columns (a row contains one entry from
each column).

3. OK then, can we mix EROS with ECOS but using only EROS or
only ECOS within a single transformation?

It depends. If you calculate a determinant (soon to be introduced) it's
ok. If you calculate the rank of a matrix — no worries.

But if you are solving a system of equations — beware. Row
operations correspond to operations on equations (side-to-side
addition and the like) which preserve the solution set of a system.
Column operations would mean adding coefficients of one unknown
to coefficients of another — that makes no sense at all.



SYSTEMS OF LINEAR EQUATIONS
A system of linear equations
( al,lxl + al’zxz + ... + aljnxn — b1
(*)< aZ,lxl + a2,2x2 + ... + az’nxn — b2

can be represented as a single matrix equation AX = B, where A
= [a;;] Is called the coefficient matrix,
X1 b4

b

X = and B = . X and B are single-column matrices.

Xn



The system of linear equations (*) can also be represented as a
vector equation

A1 (A1 A1 n T Dy
az,1 az,2 A2n b,
xl . + xz o + s + Xn e — .
A1 Am 2] Amnl  Lbp,.
C, C, C, B

Which means we are trying to find coefficients to express B as a
linear combination of columns of A. This can only be done if

span{C,, C,, ..., C,} = span{C,, C,, ..., Cp,, B}.

The matrix with columns C,, C,, ..., C,, and B is called the
augmented matrix of the system (*) and is denoted by [A|B].



Theorem. (Kronecker, Cappelli)
Asystem AX = B of linear equations has a solution iff
r(A) = r([A|B]).

Proof. The vector-oriented approach from the previous slide
together with properties of the span operation is proof enough.

Remark.

Interchanging equations, multiplying equations by non-zero
numbers and adding equations one to another do not affect the set
of solutions of a system of equations. EROS are exactly these
operations except that they are performed on rows of a matrix,
rather than on equations. This suggests a strategy for solving a
system of equations. Start with a system (*), represent it as its
augmented matrix [A|B], row-reduce the matrix to a row echelon
(or row canonical) matrix [E|C], return to the language of
equations.



Consider the system

2x + 4y — z = 11

{—4x — 3y + 3z =-20

. 2x t 4y + 2z = 2

Its augmented matrix Is

2 4 -1 11 2 4 -1 11]

—4 -3 3 —20] ~(r3 — 1,1 + 217) [O 5 1 2 .
2 4 2 2 0 0 3 -9
Clearly, the rank of both A and [A]|B] is 3 which means the system
IS solvable. Let us reduce [A|B] to a row-canonical matrix.

1 1 1 2 4 0 8 4 1
N(T'l +§T'3,T'2 —57‘3,57”3) 0O 5 0 5 ~(T‘1—E7”2,§T2)
0 0 1 -3
2 0 0 4 1 0 0 2
[0 1 0 1 ] ~(%r1) [0 1 0 1 [, which is the matrix of
0 0 1 -3 0 0 1 -3

x=2,y=1and z = -3.



Definition.
A system of equations AX = B is called homogeneous iff B = 0.

Fact.
Every homogeneous system of linear equations has a solution,
namely x; =0,x, =0, ..., x,, = 0. Any other solution (if

there is one) is called a non-trivial or non-zero solution.



Theorem.

Let AX = O be a homogeneous system of m linear equations with n
unknowns. Then the set W = {v € K"|Av = 0} of all solutions of
the system is a subspace of the vector space K™. Moreover,

dim(W) = n — r (4).
Proof. (of the first statement)

Take u,v € W.This means that Au = 0 and Av = 0. Since
matrix multiplication is distributive over addition, we have A(u +
v)= Au+Av = 0O + ® = 0Ole,ut+v e W.

Similarly, we prove that for every k € IK we have A(ku) = k(Au) =
k® = 0©.

We skip the proof of the second statement. QED



Example.

(x+y —z=0 1 1 -1
$2x — 3y+z=0A4A=|2 -3 1]~r2—2r1,r3—r1~

. The rank of the last

1 1 -1 1 1 -1
0 _5 3]~7‘3—T2~[0 —5 3
0 -5 3 0O 0 O
matrix is 2. Hence the dimension of the solution spaceis 3 - 2 = 1.

We shall find a basis for the space reducing the matrix fury%@r.

1 1 =1 1 1 -1 1 O -
1 -3
8 _05 (?;:|~__5T2~ O 1 ? ~I’1-r2~ O 1 _?3
_O O O _ -O O O_

In the language of equations this reads



f

—2
x + —z=0
5

4 y—%z=0'
\ 0z=0

The bottom equation really says, "z may be anything you like" and
the top two say x = Ez and y = Ez Hence every vector (x, y, z)

belonglng to the solutlon space Iooks like ( Z, iz Z) =

z(— =, 1) and the set {(— =, 1)} is a one-element basis for the space.



Theorem.

Let AX = B be an arbitrary system of linear equations. Let U be
the solution set and let vy € U. Then,

U:U0+W:{U0+W|WEW},

where W is the solution space of the corresponding homogeneous
system AX = 0.

Proof.

Each vector v = vy + w from vy + W is a solutionto AX = B.
Indeed, A(vy +W) = Avyg+ AW =B 4+ 0 = B.Hence,vyg + W € U

Moreover, for every vector z € U we may putt = z — v, So that
Z =vy+t. Then

At — A(Z_ Uo)z AZ_AUO —_ B_B =®
which meanst € W. Hence, U € vy, + W. QED



IHlustration.

D {=x+y
unknowns)

(2){—x+y

1 (a system of equation, one equation two

0 (the corresponding homogeneous system)

v, — a solution of (1)



Definition.

Determinant (det for short) is a function defined on the set of all
square matrices (nxn matrices, n=1,2, ...) over a field K into K.
The definition is inductive with respect to n:

1.ifn=1, (4 =[ay,]) thendet(4) =a, ;

2.1fn>1

n
det(4) = Z(—l)i+1ai,1 det(4;1)
i=1

where 4; ; denotes the matrix obtained from A by the removal of
row number i1 and column j. det(A) is also denoted by |A].

The formula is known as Laplace expansion on column 1.

Notice that we only use the symbol A; ; in the case j = 1.



Example.

ai2
1. Find det[a21 az,z]'
2
det(4) = Z(—l)i+1ai,1 det(Ai,1) = Q11027 —0Az1017
i=1

In particular, ﬁ _32‘ =2-(-2)—1-3=-7



Example.

a b c g r boc
— (_1)\1+1 __1\2+1
2. det[z ;1] Z =(—1)"""adet [y z] + (—1)“"p det [y z]

+ (—1)3*t1x det [2 fﬂ]:a(qz —1y) —p(bz —cy) + x(br — qc) =

aqz+pyc+xbr—cgx —rya —zbp. The last formula is known as the

Sarrus Rule.
BEWARE !. It only works for 3 x 3 matrices.

bl



Theorem.
Foreveryj=1,2,.. ,n andnfor every nxn matrix A

det(4) = Z(_l)i+jai,jdet(‘4i,j)
i=1

Proof. Omitted.

Remark. The theorem says that instead of Laplace expansion on
column 1 we can do Laplace expansion on column j, for every j.

Example.

1. Find det[ ] by Laplace expansion on column 2.

a21 as o

det(A) = Z(—l)Hzai,z det(4;2) = —ay2051 + az,a4 1
i=1



Theorem. (determinant versus transposition)
For every matrix A det(4) = det(4")
Proof. Omitted.

Remark. The theorem says (indirectly) that instead of Laplace
expansion on columns we can do Laplace expansion on rows.

Example.

1. Find det[ by Laplace expansion on row 1.

a21 ar 2]

det(4) = Z(—l)lHaLi det(Ay;) = a11a22 — a12024
i=1



Theorem. (determinant versus EROS)
For every matrix A
1. If A~ (ryo ;) B thendet(B) = —det(4) (i #j)
2. IfA~ (r; < cry) B thendet(B) = cdet(A)
3. WA~ (< r+r)Bandi#jthendet(B) = det(4)
4. Combining 3 with 2 we get
If A~ (r; « 1, +cr;)B and i # j then det(B) = det(A).
Proof. Omitted.

Remark. Thanks to the transposition law the theorem applies to
column operations as well.

Remark.
"A ~ (r; « cr;) B" means "B has been obtained from A by
replacing r; of A with cr;".



Theorem. (determinant versus not-quite-matrix-addition)

Suppose s € {1,2,...,n} and A[i,j] = B][i,j] = C[i,j] forevery i,
such that j # s and C[i,s] = Ali,s| + BJi,s]. Thendet(C) =
det(4) + det(B).

Proof..
'C1,1 By Laplfsuce
expansion
C
det 2.,1 — on column s
Cn,1

1( 1)l+s(a15+bl S) det(Cl S) Z 1( 1)l+Sa’lS det(Cl S) +
L (=1)"Sh; s det(C;5) = det(A) + det(B).

Warning. This is NOT about determinant of the sum of two matrices
being equal to the sum of their determinants; that is not true. This is
about determinant of a matrix whose ONE column is the sum of two
vectors.



Theorem. (other properties of det)
For every nxn matrices A and B

1. det(A) # 01iff r(A) = n, in other words, rows of A are
linearly independent

2. If for every I,j such that1>] a; ; =0 (only O's below the main
diagonal, triangular matrix) then det(4) = a; 1a, 5 ... ap p

3. In particular, det(,, ,,) = 1
4, det(AB) = det(A) det(B)
Proof. Omitted.

Part 2 suggests a strategy for calculation of determinants of large
matrices: row-reduce the matrix to a triangular form.



