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LECTURE 14

• EROS cont-d.

• Systems of Equations

• Kronecker-Capelli Theorem

• Determinant 



Definition.
The row rank of an 𝑛 ×𝑚 matrix 𝐴, 𝑟(𝐴), is the dimension of 
the subspace of 𝔽𝑚 spanned by rows of A.

Theorem.
For every two matrices 𝐴 and 𝐵, if 𝐴~𝐵 then 𝑟(𝐴) = 𝑟(𝐵).
Proof. (skipped) 

Note. Since the rank of a row echelon matrix is the number of its 
nonzero rows, to calculate the rank of a matrix we row reduce the 
matrix to a row echelon one and count its nonzero rows.

Theorem.
For every matrix 𝐴, 𝑟 𝐴 = 𝑟(𝐴𝑇).
We skip the proof .

Note. We could just as well define column rather than row operations and 
column rank of a matrix. In view of the last theorem the row and the column 
rank of every matrix is the same, so we just use the term rank.



Example.

𝐴 =

0 2 1 1
1 1 1 0
2 1 0 0
2 6 4 2

𝑟1 ↔ 𝑟4

2 6 4 2
1 1 1 0
2 1 0 0
0 2 1 1

𝑟1

2

1 3 2 1
1 1 1 0
2 1 0 0
0 2 1 1

𝑟2 − 𝑟1, 𝑟3 − 2𝑟1

1 3 2 1
0 −2 −1 −1
0 −5 −4 −2
0 2 1 1

2𝑟2 − 𝑟3

1 3 2 1
0 1 2 0
0 −5 −4 −2
0 2 1 1

𝑟3 + 5𝑟2, 𝑟4 − 2𝑟2

1 3 2 1
0 1 2 0
0 0 6 −2
0 0 −3 1

𝑟4 +
1

2
𝑟3,

1

6
𝑟3

1 3 2 1
0 1 2 0

0 0 1 −
1

3

0 0 0 0

𝑟1 − 3𝑟2, 𝑟2 − 2𝑟3

1 0 −4 1

0 1 0
2

3

0 0 1 −
1

3

0 0 0 0

𝑟1 + 4𝑟3

1 0 0
1

3

0 1 0
2

3

0 0 1 −
1

3

0 0 0 0



FAQ.

1. Can we do several EROS in one step, like we did in the example?

It depends. A common mistake is to do something like 𝑟1 − 𝑟2 and 
𝑟3 − 𝑟1 in one go. What is wrong with this? Row 𝑟1 is modified by 
the first operation which means in the second one you should use the 
new 𝑟1. On the other hand, if you first do 𝑟3 − 𝑟1 and then 𝑟1 − 𝑟2 it's 
ok. In extreme cases, people might row-reduce any matrix to nil, like 
this:

𝑎 𝑏
𝑐 𝑑

~ 𝑟1− 𝑟2 , 𝑟2− 𝑟1
𝑎 − 𝑐 𝑏 − 𝑑
𝑐 − 𝑎 𝑑 − 𝑏

~ 𝑟1+ 𝑟2 , 𝑟2+ 𝑟1
0 0
0 0

which, if correct, would mean that the rank of every matrix is 0.

In short, when in doubt do one ERO at a time.



FAQ.

2. Can we mix EROS with ECOS?

It depends. You must avoid doing row and column operations in one 
transformation: writing A~(𝑟1 − 𝑟3, 𝑐4 + 𝑐1) 𝐵 is asking for trouble 
because after 𝑟1 − 𝑟3 columns 𝑐4 and 𝑐1 are not what they were, a 
row operation affects all columns (a row contains one entry from 
each column).

3. OK then, can we mix EROS with ECOS but using only EROS or 
only ECOS within a single transformation?

It depends. If you calculate a determinant (soon to be introduced) it's 
ok. If you calculate the rank of a matrix – no worries.
But if you are solving a system of equations – beware. Row 
operations correspond to operations on equations (side-to-side 
addition and the like) which preserve the solution set of a system. 
Column operations would mean adding coefficients of one unknown 
to coefficients of another – that makes no sense at all.



SYSTEMS OF LINEAR EQUATIONS

A system of linear equations

(∗)

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + … + 𝑎1,𝑛𝑥𝑛 = 𝑏1
𝑎2,1𝑥1 + 𝑎2,2𝑥2 + … + 𝑎2,𝑛𝑥𝑛 = 𝑏2

. . .
𝑎𝑚,1𝑥1 + 𝑎𝑚,2𝑥2 + …+ 𝑎𝑚,𝑛𝑥𝑛 = 𝑏𝑚

can be represented as a single matrix equation 𝐴𝑋 = 𝐵, where 𝐴
= [ai,j] is called the coefficient matrix, 

𝑋 =

𝑥1
⋮
𝑥𝑛

and 𝐵 =
𝑏1
⋮
𝑏𝑚

. 𝑋 and 𝐵 are single-column matrices.



The system of linear equations (∗) can also be represented as a 
vector equation

𝑥1

𝑎1,1
𝑎2,1
⋮

𝑎𝑚,1

+ 𝑥2

𝑎1,2
𝑎2,2
⋮

𝑎𝑚,2

+ …+ 𝑥𝑛

𝑎1,𝑛
𝑎2,𝑛
⋮

𝑎𝑚,𝑛

=

𝑏1
𝑏2
⋮
𝑏𝑚

Which means we are trying to find coefficients to express 𝐵 as a 
linear combination of columns of 𝐴. This can only be done if 

span{𝐶1, 𝐶2, … , 𝐶𝑛} = span{𝐶1, 𝐶2, … , 𝐶𝑛, 𝐵}. 

The matrix with columns 𝐶1, 𝐶2, … , 𝐶𝑛 and 𝐵 is called the 
augmented matrix of the system (∗) and is denoted by [𝐴|𝐵].

𝐶1 𝐶2 𝐶𝑛 𝐵



Theorem. (Kronecker, Cappelli)

A system 𝐴𝑋 = 𝐵 of linear equations has a solution iff 

𝑟(𝐴) = 𝑟([𝐴|𝐵]).

Proof. The vector-oriented approach from the previous slide 
together with properties of the span operation is proof enough.

Remark.

Interchanging equations, multiplying equations by non-zero 
numbers and adding equations one to another do not affect the set 
of solutions of a system of equations. EROS are exactly these 
operations except that they are performed on rows of a matrix, 
rather than on equations. This suggests a strategy for solving a 
system of equations. Start with a system (∗), represent it as its 
augmented matrix [A|B], row-reduce the matrix to a row echelon 
(or row canonical) matrix [E|C], return to the language of 
equations.



Consider the system 

ቐ

2𝑥 + 4𝑦 − 𝑧 = 11
−4𝑥 − 3𝑦 + 3𝑧 = −20

2𝑥 + 4𝑦 + 2𝑧 = 2

Its augmented matrix is
2 4 −1 11
−4 −3 3 −20
2 4 2 2

~(𝑟3 − 𝑟1, 𝑟2 + 2𝑟1)
2 4 −1 11
0 5 1 2
0 0 3 −9

. 

Clearly, the rank of both 𝐴 and [𝐴|𝐵] is 3 which means the system 
is solvable. Let us reduce [𝐴|𝐵] to a row-canonical matrix.

~(𝑟1 +
1

3
𝑟3, 𝑟2 −

1

3
𝑟3,

1

3
𝑟3)

2 4 0 8
0 5 0 5
0 0 1 −3

~ 𝑟1 −
4

5
𝑟2,

1

5
𝑟2

2 0 0 4
0 1 0 1
0 0 1 −3

~(
1

2
𝑟1)

1 0 0 2
0 1 0 1
0 0 1 −3

, which is the matrix of 

𝑥 = 2, 𝑦 = 1 𝑎𝑛𝑑 𝑧 = −3.



Definition.

A system of equations 𝐴𝑋 = 𝐵 is called homogeneous iff 𝐵 = Θ.

Fact.

Every homogeneous system of linear equations has a solution, 
namely 𝑥1 = 0, 𝑥2 = 0, … , 𝑥𝑛 = 0. Any other solution (if

there is one) is called a non-trivial or non-zero solution.



Theorem.

Let 𝐴𝑋 = Θ be a homogeneous system of m linear equations with n
unknowns. Then the set 𝑊 = {𝑣 ∈ 𝕂𝑛|𝐴𝑣 = Θ} of all solutions of 
the system is a subspace of the vector space 𝕂𝑛. Moreover,

dim(𝑊) = 𝑛 − 𝑟 (𝐴).

Proof. (of the first statement)

Take 𝑢, 𝑣 ∈ 𝑊. This means that 𝐴𝑢 = Θ and 𝐴𝑣 = Θ. Since 
matrix multiplication is distributive over addition, we have 𝐴(𝑢 +
𝑣) = 𝐴𝑢 + 𝐴𝑣 =  +  =  i.e., 𝑢 + 𝑣 ∈ 𝑊.

Similarly, we prove that for every k ∈ 𝕂 we have 𝐴 𝑘𝑢 = 𝑘(𝐴𝑢) =
𝑘 = .

We skip the proof of the second statement. QED



Example.

ቐ

x + y − z = 0

2x − 3y + z = 0

x − 4y + 2z = 0

𝐴 =
1 1 −1
2 −3 1
1 −4 2

~ 𝑟2 − 2𝑟1, 𝑟3 − 𝑟1 ~

1 1 −1
0 −5 3
0 −5 3

~ 𝑟3 − 𝑟2 ~
1 1 −1
0 −5 3
0 0 0

. The rank of the last 

matrix is 2. Hence the dimension of the solution space is 3 – 2 = 1. 

We shall find a basis for the space reducing the matrix further. 

1 1 −1
0 −5 3
0 0 0

~
1

−5
𝑟2 ~

1 1 −1

0 1
−3

5

0 0 0

~ r1-r2 ~

1 0
−2

5

0 1
−3

5

0 0 0

. 

In the language of equations this reads



x +
−2

5
𝑧 = 0

y−
3

5
𝑧 = 0

0𝑧 = 0

. 

The bottom equation really says, "z may be anything you like" and 

the top two say 𝑥 =
2

5
𝑧 and y =

3

5
𝑧. Hence every vector (𝑥, 𝑦, 𝑧) 

belonging to the solution space looks like (
2

5
𝑧,

3

5
𝑧, 𝑧) = 

z(
2

5
, 
3

5
, 1) and the set {(

2

5
, 
3

5
, 1)} is a one-element basis for the space.



Theorem.

Let 𝐴𝑋 = 𝐵 be an arbitrary system of linear equations. Let 𝑈 be 
the solution set and let 𝑣0 ∈ 𝑈. Then, 

𝑈 = 𝑣0 +𝑊 = {𝑣0 + 𝑤|𝑤 ∈ 𝑊},

where 𝑊 is the solution space of the corresponding homogeneous 
system 𝐴𝑋 = Θ.

Proof.

Each vector 𝑣 = 𝑣0 +𝑤 from 𝑣0 +𝑊 is a solution to 𝐴𝑋 = 𝐵. 
Indeed, 𝐴(𝑣0 + w) = 𝐴𝑣0 + 𝐴w = 𝐵 + Θ = 𝐵. Hence, 𝑣0 +𝑊 ⊆ 𝑈

Moreover, for every vector 𝑧 ∈ 𝑈 we may put 𝑡 = 𝑧 − 𝑣0 so that 
𝑧 = 𝑣0 + 𝑡. Then 

𝐴𝑡 = 𝐴(𝑧 − 𝑣0) = 𝐴𝑧 − 𝐴𝑣0 = 𝐵 − 𝐵 = Θ

which means 𝑡 ∈ 𝑊. Hence, 𝑈 ⊆ 𝑣0 +𝑊. QED



Illustration.

(1) {−𝑥 + 𝑦 = 1 (a system of equation, one equation two 
unknowns)

(2) {−𝑥 + 𝑦 = 0 (the corresponding homogeneous system)

𝑣0 – a solution of (1)

v0



Definition.
Determinant (det for short) is a function defined on the set of all 
square matrices (nn matrices, n=1,2, …) over a field 𝕂 into 𝕂. 
The definition is inductive with respect to n:
1. if 𝑛 = 1, (𝐴 = [𝑎1,1]) then det(𝐴) = 𝑎1,1
2. if 𝑛 > 1

det 𝐴 =෍

𝑖=1

𝑛

−1 𝑖+1𝑎𝑖,1det(𝐴𝑖,1)

where 𝐴𝑖,𝑗 denotes the matrix obtained from 𝐴 by the removal of 

row number i and column j. det(𝐴) is also denoted by |𝐴|.

The formula is known as Laplace expansion on column 1.

Notice that we only use the symbol 𝐴𝑖,𝑗 in the case 𝑗 = 1.



Example.

1. Find det
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

. 

det 𝐴 = ෍

𝑖=1

2

−1 𝑖+1𝑎𝑖,1 det 𝐴𝑖,1 = 𝑎1,1𝑎2,2 − 𝑎2,1𝑎1,2

In particular, 
2 3
1 −2

= 2 ⋅ −2 − 1 ⋅ 3 = −7



Example.

2. det

𝑎 𝑏 𝑐
𝑝 𝑞 𝑟
𝑥 𝑦 𝑧

= −1 1+1𝑎 det
𝑞 𝑟
𝑦 𝑧 + −1 2+1𝑝 det

𝑏 𝑐
𝑦 𝑧

+ −1 3+1𝑥 det
𝑏 𝑐
𝑞 𝑟

=𝑎(𝑞𝑧 − 𝑟𝑦) − 𝑝(𝑏𝑧 − 𝑐𝑦) + 𝑥(𝑏𝑟 − 𝑞𝑐) =

aqz+pyc+xbr− cqx −rya −zbp. The last formula is known as the 

Sarrus Rule.

BEWARE !. It only works for 3 × 𝟑 matrices. 

𝑎 𝑏 𝑐
𝑝 𝑞 𝑟
𝑥 𝑦 𝑧
𝑎 𝑏 𝑐
𝑝 𝑞 𝑟

+
+
+

−
−
−



Theorem. 

For every j = 1,2,… , 𝑛 and for every 𝑛𝑛 matrix 𝐴

det 𝐴 =෍

𝑖=1

𝑛

−1 𝑖+𝑗𝑎𝑖,𝑗det(𝐴𝑖,𝑗)

Proof. Omitted.

Remark. The theorem says that instead of Laplace expansion on 
column 1 we can do Laplace expansion on column j, for every j.

Example.

1. Find det
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

by Laplace expansion on column 2. 

det 𝐴 = ෍

𝑖=1

2

−1 𝑖+2𝑎𝑖,2 det 𝐴𝑖,2 = −𝑎1,2𝑎2,1 + 𝑎2,2𝑎1,1



Theorem. (determinant versus transposition)

For every matrix A det 𝐴 = det(𝐴𝑇)

Proof. Omitted.

Remark. The theorem says (indirectly) that instead of Laplace 
expansion on columns we can do Laplace expansion on rows.

Example.

1. Find det
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

by Laplace expansion on row 1. 

det 𝐴 = ෍

𝑖=1

2

−1 1+𝑖𝑎1,𝑖 det 𝐴1,𝑖 = 𝑎1,1𝑎2,2 − 𝑎1,2𝑎2,1



Theorem. (determinant versus EROS)

For every matrix 𝐴

1. If 𝐴 ~ (𝑟𝑖↔ 𝑟𝑗) 𝐵 then det 𝐵 = −det(𝐴) (𝑖 ≠ j)

2. If 𝐴 ~ (𝑟𝑖 ← 𝑐𝑟𝑖) 𝐵 then det 𝐵 = 𝑐det(𝐴)

3. If 𝐴 ~ (𝑟𝑖 ← 𝑟𝑖 + 𝑟𝑗) 𝐵 and 𝑖 ≠ j then det 𝐵 = det(𝐴)

4. Combining 3 with 2 we get

If 𝐴 ~ (𝑟𝑖 ← 𝑟𝑖 + 𝑐𝑟𝑗)𝐵 and 𝑖 ≠ j then det 𝐵 = det(𝐴).

Proof. Omitted.

Remark. Thanks to the transposition law the theorem applies to 
column operations as well.

Remark.
"𝐴 ~ (𝑟𝑖 ← 𝑐𝑟𝑖) 𝐵" means "𝐵 has been obtained from 𝐴 by 
replacing 𝑟𝑖 of 𝐴 with 𝑐𝑟𝑖".



Theorem. (determinant versus not-quite-matrix-addition)

Suppose s ∈ {1,2,… , n} and 𝐴[𝑖, 𝑗] = 𝐵[𝑖, 𝑗] = 𝐶[𝑖, 𝑗] for every i,j
such that 𝑗 ≠ 𝑠 and 𝐶[𝑖, 𝑠] = 𝐴[𝑖, 𝑠] + 𝐵[𝑖, 𝑠]. Then det(𝐶) =
det(𝐴) + det(𝐵).

Proof..

det 

c1,1 … a1,𝑠 + 𝑏1,𝑠 … c1,𝑛
c2,1 … a2,𝑠 + 𝑏2,𝑠 … c2,𝑛
⋮ ⋮ ⋮ ⋮ ⋮

c𝑛,1 … a𝑚,𝑠 + 𝑏𝑛,𝑠 … c𝑛,𝑛

=

σ𝑖=1
𝑛 −1 𝑖+𝑠(𝑎𝑖,𝑠+𝑏𝑖,𝑠) det(𝐶𝑖,𝑠) = σ𝑖=1

𝑛 −1 𝑖+𝑠𝑎𝑖,𝑠 det(𝐶𝑖,𝑠) +

σ𝑖=1
𝑛 −1 𝑖+𝑠𝑏𝑖,𝑠 det(𝐶𝑖,𝑠) = det(𝐴) + det(𝐵).

Warning. This is NOT about determinant of the sum of two matrices 

being equal to the sum of their determinants; that is not true. This is 

about determinant of a matrix whose ONE column is the sum of two 

vectors.

By Laplace 
expansion 
on column s



Theorem. (other properties of det)

For every nn matrices 𝐴 and 𝐵

1. det(𝐴) ≠ 0 iff 𝑟(𝐴) = 𝑛, in other words, rows of A are 
linearly independent

2. If for every i,j such that i > j 𝑎𝑖,𝑗 = 0 (only 0's below the main 

diagonal, triangular matrix) then det(𝐴) = 𝑎1,1𝑎2,2…𝑎𝑛,𝑛

3. In particular, det(𝐼𝑛,𝑛) = 1

4. det(𝐴𝐵) = det(𝐴) det(𝐵)

Proof. Omitted.

Part 2 suggests a strategy for calculation of determinants of large 
matrices: row-reduce the matrix to a triangular form.


